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Need for a Measure of Association 

In analyzing multidimensional contingency 
tables the goodness of fit of various models is 
generally tested via Pearson or likelihood ratio 
chi.square. The acceptance or rejection of a 
model on the basis of a significance test alone 
runs the risk of allowing the number of cases to 
determine, at least in part, the number of param- 
eters deemed to be significant. As in other test 
situations, judgment of the existence of a rela- 
tionship should be dependent on the strength of 
the relationship as well as its statistical sig- 
nificance. If a sizable relationship is indi- 
cated the acceptable significance level might be 
raised to .10, say, to avoid rejecting a poten- 
tially meaningful source of variation. Converse- 
ly, effects which are extremely small, even 

though statistically significant, might be elim- 
inated from a model. Measures of association are 
also useful in comparing tables with different 
numbers of cases. 

Several measures of association for contin- 
gency tables have been developed for two -way 
tables, and one of the problems is to select an 
appropriate one fort use with higher dimensioEs. 
We conclude that X divided by the maximum X for 
a table serves as a suitable basis for a measure 
of association. A second problem is the applica- 
tion of the chosen measure of association to high- 
er dimensioned tables. In some situations multi- 
dimensional tables can be related to two -way 
tables. In the multiple correlation type of situ- 
ation a dependent variable can be related to a 
combination of categories of independent vari- 
ables by using a two -way table. In the partial 
correlation situation, two -way tables can be av- 
eraged over a set of control variables. For 
higher order effects, such as a three -way or four- 
way effect or for combinations of effects, reduc- 
tion to two -way tables is not possible. The task 
is then to find the maximum X for higher order 
effects that they can be compared with the ob- 
tained X for a given effect. Goodman (1971) 
suggested using a proportional reduction in X2 as 
a method of calculating multiple or partial cor- 
relation coefficients. The approach suggested 
here differs from his in that higher order effects 
are analyzed in terms of the maximum X father 
than an arbitrarily- selected empirical X . 

The Choice Among Measures of Association 

For analysis of multidimensional tables the 
most convegient measures of association are those 
based on X', since data analysis is performed us- 
ing X2. It is possible to partition higher order 
X into their component parts and to relate X 

for two -way tables to higher order ones. Goodman 
(1971), for examp ;e, suggests using a proportion- 
al reduction in X as a method of calculating 
multiple and partial correlation coefficients. 
X is suitable with either ordered or unordered 
categories. Measures of association requiring 
ordered categories, such as Kendall's tau, 
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Somer's D and Goodman and Kruskal's gamma are too 
specialized for routine contingency table anal- 
ysis, since they apply only to certain tables. 
Moreover, gamma and its 2 x 2 table version, 
Yule's have tendencies to be high in compari- 
son to other coefficients when marginals are 
distributed unevenly. 

Another advantage of -based measures of 
association is their symmetric nature, requiring 
only a single measure regardless of the direction 
of relationship or prediction. There are a num- 
ber of asymmetric measures of association which 
are developed on different bases and which are 
meaningful in different ways. These are Goodman 
and Kruskal's proportional reduction of errors of 
prediction measures lambda and tau, Margolin and 
Light's analysis of variance measure of 
proportion of row variation attributable to col- 
umn variation, and the proportional reduction of 
uncertainty measure based on information theory. 
Lambda cannot be recommended for tables with un- 
even marginals since a zero coefficient results 
when the largest frequencies in each column fall 
in one row and other measures of association show 
a relationship. This fault is not shared by tau, 
even though it is also a measure developed on the 
principle of proportional reduction in errors of 
prediction. On the other hand, tau is numeri- 
cally identical to Margolin and Light's (1974) 
BSS/TSS measure, showing that proportional reduc- 
tion in error can be quite similar to proportion 
of explained variation. According to Bishop, 
Fienberg and Hollan (1975: 391), BSS/PSS and tau 
involve a Pearson X -like expression, and when 
tEe row sums are equal, tgey are equal to 
0 / (I -14 and hence to X / N(I -1). N(I -1) is 

maximum X when I e J. The relative reduction it 
uncertainty measure utilizes likelihood statis- 
tics to express uncertainty, which is "variance - 
like" (Hays, 1973). These measures, except for 
their asymmetric nature (some have symmetric 
versions), have a great deal in common bop mean- 
ingfully and2numerically, with Craér's V , which 
represents X divided by maximum X . The inter- 
pretation of these measures not any easier 
than the interpretation of X -based measures, as 
is sometimes claimed. In fact, these measures 
produce very small coefficients generally in com- 
parison with measures such as V or the contin- 
gency coefficient which resemble the Pearson r 
rather than r as these measures do. 

One of the oldest X2 -based measures of 
association is Karl Pearson's mean square con- 
tingency or contingency coefficient: 

C = - 
+ , 

where 
02 

is estimated by X2 / N. "Karl Pearson 
showed that, if the items are capable of inter- 
pretation as a quantitatively ordered series, if 
the distributions are normal, and if the regres- 
sion is rectilinear, C becomes identical with r 
as the number of categories is indefinitely in- 



creased." (Peters and vanVoorhis, 1940: 392). 

In other words, C is an estimate of -the Pearson 
but can be applied even when categories are 

unordered and the relationships are not linear. 
Its shortcoming is that its maximum value does 
not reach unity. But maximum ¢2 is the minimum 
of I -1 or J -1 and C can be calculated: 

-max 

/ m.in(I-1,J-1) 

rin(I,J) 

It is possible to correct C to achieve unity by 
calculating C/C , although it is not a standard 
practice. prow proposed the use of 

1/(I-1)(J-1) 
T= 

but achieved a maximum of 1 only for square 
tables. Its use is therefore not recommended. 

Cramer (1946) suggested norming 02 by divid- 
ing it by its maximum value: 

V 

2 

min(I-1,J-1) 

Estimating 02 

X2 

min(I- 1,J -1) 

The denominator term is maximum X2 for a two -way 
I x J table so that V can be given a proportion 
of maximum variation due to interaction interpre- 
tation. V has an acceptable interpretation via 
V2 and unlike C and T varies between 0 and 1. It 
is our choice as a suitable measure for applica- 
tion to higher order tables, with C/C a second 
possibility. 

Maximum X2 

According to Cramer (1946: 443), the maximum 
V2 of unity is obtained "when and only when each 
row (when r s) or each column (when r s) con- 
tains one single element different from zero." 
An example of arrangement of cell frequencies 
for a maximum V is shown in Fig. 1 for a 3 x 4 
table with I J. Cramér's condition can be ex- 
pressed as 

xii . 

30 - - - 30 

- 15 5 - 20 

- - - 10 10 

30 15 5 10 60 

Fig. 1. A 3 x 4 Table 
with Cramér's V = 1.0. 

We start with the formula for X2: 
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x 2 

X2.=N . 

With cancellation of x 

X2 max 
N (JJ x - 1) 

i+ 

By definition xi+ . .Therefore, 

max 
N (E1-1) = N (I-1) , 

or when J I , 

X2 = N (J-1) - max - 

Hence, 

R2max 
N min(I-1,J-1) 

For example, 

2 302 152 52 102 X= 60(3030 
+ 2015 + 2Ó 55 1010 1) 

= 60( 1 + 1 + 1 -1) 

60(3-1) 120 . 

Analogue of Multiple Correlation 

The analogue to the multiple correlation, in 
which Variables 2, 3 and 4, for example, are re- 

lated to Variable 1, the dependent variable, can 
be set up by means of a two -way table. The row 

variable is Variable 1 with I categories and the 

column variable consists of all possible combina- 

tions of categories of Variables 2, 3 and 4 with 
J x K x L categories in all. In terms of the 

loglinear model this table represents an independ- 

ence model (1 x 234), which tests all effects of 
2, 3 and 4 on 1: (12), (13), (14), (123), (124), 

(134), (1234). The model can be run on a program 
like ECTA by fitting 1 and 234. With X2 for the 
table available it is a simple matter Tin compute 
Cramer's V and it can be treated as an analogue 
to the multiple correlation coefficient: 

X2(1x234) 

!1.234 N min(I-1,JKL-1) 

In Fig. 2 is shown a 3 x 2 x 4 table ar- 
ranged to give a maximum X2 for Variable 1 

against 2 and 3 combined. In fill,jng the cells 

the distinctions between categories of Variable 2 

and 3 are ignored. Maximum X2 is equal to 
N x (3 -1) or 240. 

10 - 
- 20 

- 20 

- - 

- - 

10 - 

10 - 

- 20 

40 
50 

- - 10 - - 20 - - 30 

10 20 10 20 10 20 10 20 120 

Fig. 2 A3 2 x 4 Table Ariranged 
for Maximum R2(1x23). 



Partial Correlation 

Partial correlation is generally defined as 
a measure of association between two variables 
holding constant the effects of a third variable. 
For continuous variables the effects of a third 

:variable can be removed by taking the residual - 
iced score and correlating these. For discrete 
variables- :categories are generally unordered and 
this approach cannot be used. Instead, the al- 
ternative 'of setting up- separate subtables for 
each level of the third variable is used 
(Agresti, 1977). For each two -way table a meas- 

'ure of association is calculated and these are 
weighted and averaged to obtain an overall meas- 
ure of partial association. When using X2 it is 
necessary either to assume that higher order 
interactions do not exist or to remove the ef- 
fects. 

Given a three -way table, we set up I x J 

tables for relationships for Variables 1-and-2 
for each level of Variable 3. For each table 

2 

2 
k min(I-1,J-1) 

For an overall measure each 
2 

k 
can be weighted 

by the proportion of the total number of 
cases in each subtable: 

V2 
X2 

k 

N min(I-1,J-i) 

The cancel out and 

V2 

N min(I-1,J-l) 

The numerator is the X2 for the partial associa- 
tion model, (1x213) and tests the effects (12) 

(123), and can be obtained by fitting (12), (13). 

The denominator term is the maximum X2 value for 
the partial correlation problem. From the numer- 
ator the higher order interaction must be re- 
moved, leaving only the (12) effect. X2(123) can 

be obtained by fitting (121, (13), (23). 

X2(1x213)- X2(123) leaves X4(12). Hence, 

X2(12) 

212..3 N min(I- 1,J -1) 

The interpretation of X2(12) is the conditional 
test for (1x213), given no three -factor effect 
(Bishop, Fienberg and Holland, 1975: 171). When 
higher order interaction exists it is desirable 
to examine subtables individually. 

In Fig. 3 is shown an analysis of the par - 
tial association of Preference x Use given 
Temperature and Softness in the Reis -Smith data. 
Higher order interactions are calculated by fit- 
ting (12)(134)(234). The interactions are sig- 
nificant at the .153 level and V of .089 and 

C/C of .126 indicate the existence of an ap- 
pratáble amount of higher order interaction. 
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Model 
Fitted 
Parameters X2 - df p V - C/C - -max 

(1x2134) (134)(234) 27.81 6 .000 .166 .232 

(123)(124) (12)(134) 

(1234) (234) 8.05 5 .153 .089 ..126 

(12) 9.76 1 .000 .140 .196 

Fig. 3. Analysis of Partial Association 
for the Reis -Smith Data 

For the individual subtables the are 

.122 .261 .225 

.005 .108 .202 

and they show how the partial V is only an 
average and cannot reflect the range of vari- 
ations among subtables. 

Higher Order Interactions 

To apply Cramér's V to higher order interac- 
tions it is necessary to find the maximum X2 cor- 
responding to them. In Fig. 4 is shown a 3 x 2 x 
2 table with frequencies arranged internally to 
obtain a maximum (123) interaction. 

20 

20 

20 

10 20 20 10 60 

Fig. 4. A3x2x2Table 
with Maximum (123) Effect. 

X2(123) obtained by fitting (12)(13)(23) is given 
by the ECTA computer program as 60 for the Pearsol 
version and 76.38 for the likelihood ratio one. 
Evidently, the maximum X2 for three -way interac- 
tion is given by N times the minimum of the three, 
I -1, J -1, K -1. Hence, 

%2(123) 

2123 N min(I- 1,J- 1,K -1) 

The formula for the maximum X2 applies to the 
Pearson X2 and only approximately to the likeli- 
hood ratio X2. Hence, it is prudent to use 
Pearson X2 for the numerator terms in calculating 
Cramfir's V. 

In Fig. 5 an example of maximum three -way 
effect for a 3 x 3 x 4 table is shown. X2(123) 
for this table is, 240 and the likelihood ratio X2 
is 263.67. The 240 agrees with the formula: 

X2max 
120 (3-1) 240 . 

10 - - - - 10 - 10 - - 10 - 

- 10 - 10 - - - - 10 - - 10 

- - - 10 - 10 - - 10 - - 

Fig.5. A3x3x4Table 
with Maximum (123) Effect. 



By analogy maximum X2 for four -way interac- 
tion can be calculated 

1-C 

2 
N min(I-1,J-1,K-1,L-1) . 

In Fig. 6 is shown an example of maximum four -way 
effect for a 3 x 2 x 2 x 2 table. 

10 - 
- 10 

- 10 

- 10 

10 - 

10 - 

- 10 

10 - 

10 - 

10 - 

- 10 

- 10 

Fig. 6 . A 3 x 2 x 2 x 2 Table 
with Maximum (1234) Effect. 

Pearson X2 for this table is 120, which agrees 
with the formula; likelihood ratio X2 is 152.76. 
An indication that this is indeed the maximum 
value is shown by the fact that other separate 
effects are zero. 

To set up a table for maximum X2 for a 
three -way effect one can use a latin square with 
the number of treatment equal to the smallest di- 
mension. Each treatment appears only once in 
each row and column. Each treatment is then set 
up as a separate table as in Fig. 4 or 5. If 

there are additional rows, columns or blocks, one 

of the rows, columns or blocks is arbitrarily 
duplicated. In Fig. 4 the last row is a repli- 
cate and in Fig. 5 the last block is. For maxi- 
mum four -way effects not only the rows and 
columns are arranged in latin- square form, but 
also the tables themselves. For example, in Fig. 
6 Table 1 is followed by Table 2 and then Table 2 

by Table 1. This forms a latin square of the 
form 1, 2, 2, 1. 

There is no reason why V cannot be 
applied to models representing a combination of 
effects. It would seem reasonable that the maxi- 
mum X2 would be determined by the component with 
the highest maximum. For example, given a model 
representing X2(123) + X2(124) + X2(1234) for a 
3x3x3x4 table, the largest maximum would be for 
X2(124). This is N x min(I- 1,J- 1,L -1) or N x 2. 

The calculation of C/C is possible if X2 
and X2 are available. avariables are basi- 
cally móñtinuous in nature, although tabled as 
discrete categories, and if an estimate of the 
Pearson r is desired, C /Cx can be calculated. 

Summary 

For appli2ation to multidimensional contin- 
gency tables X -based measures of association are 
the most convenient. Of the available measures 
based on X2 for the two -way table Cramér's V is 

the most appropriate. It is applicable to both 
ordered and unordeKed categories, it is a sy2mmet- 

ric measure, and V can be interpreted as XL di- 
vided by the maximum possible X2. Maximum X2, 
which is given as N min(1- 1,J -1) is easy to cal- 

culate. Cramér's V can be applied to the multi- 
ple correlation situation and the analogue of the 
partial correlation coefficient. It can also be 

applied to the three -way, four -way and other 
higher order interactions, as well as to X2 based 
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on a combination of effects. A second candidate 

is Ç 
/ -Cmax' 

References 

Agresti, Alan (1977). Considerations in Measur- 

ing Partial Association for Ordinal Categorical 

Data. Journal of the.American Statistical 

Association, 72, 37 -45. 

Bishop, Yvonne M. M., Fienberg, Stephen E. and 

Holland, Paul W. (1975). Discrete Multivariate 
Analysis, Theory and Practice. Cambridge, 

Mass., The MIT Press. 

Costner, Herbert (1965). Criteria for Measures 

of Association. American Sociological Review, 

30, 341 -353. 

Cramér, H. (1946). Mathematical Methods of 

Statistics. Princeton, N.J., Princeton Uni- 

versity Press. 
Goodman, Leo A. (1971). The Analysis of Multi- 

dimensional Contingency Tables: Stepwise Pro- 

cedures and Direct Estimate Methods of Build- 

ing Models for Multiple Classifications. 

Technometrics, 13, 33-61. 
Hays, William L. (1973). Statistics for the 

Social Sciences. New York, N.Y., Holt, 

Rinehart and Winston. 
Margolin, Barry H. and Light, Richard J. (1974). 

Analysis of Variance for Categorical Data II: 

Small Sample Comparisons with Chi Square and 

Other Competitors. Journal of the American 

Statistical Association, 69, 755 -764. 

Peters, Charles C. and van Voorhies, Walter R. 

(1940). Statistical Procedures and Their 

Mathematical Bases. New York, N.Y., McGraw - 

Hill. 


